Chronic intermittent hypobaric hypoxia decreases β-adrenoceptor activity in right ventricular papillary muscle

Author:

Guan Yue1,Gao Lu1,Ma Hui-Jie1,Li Qian1,Zhang Hao1,Yuan Fang1,Zhou Zhao-Nian2,Zhang Yi1

Affiliation:

1. Department of Physiology, Hebei Medical University, Shijiazhuang, China; and

2. Laboratory of Hypoxic Cardiovascular Physiology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

Abstract

Chronic intermittent hypobaric hypoxia (CIHH) has an effective cardiac protection against ischemia-reperfusion injury. However, the underlying mechanisms are not fully known. It has been shown that blockade of β-adrenergic receptor exerts anti-arrhythmic action and improves cardiac remodeling in ischemic myocardium. Thus we determined the influence of CIHH on β-adrenergic receptor activity in right ventricular papillary muscle of rats. We found that the action potential duration in right ventricular papillary muscle was significantly longer in CIHH rats than in control rats. Activation of β-adrenergic receptor with dl-isoproterenol dose-dependently increased action potential duration and the contractility in right ventricular papillary muscle. In CIHH rats, the prolonged effect of dl-isoproterenol on action potential duration and the positive inotropic effect were significantly decreased compared with that in control rats. Furthermore, radioligand-binding experiments revealed that the density and affinity of β-adrenergic receptor in right ventricular myocardium was significantly lower in CIHH rats. In addition, Western blot analysis revealed that the membrane-bound G protein Gsα expression level in cardiac myocardium was significantly lower in CIHH rats than that in control rats. Collectively, these data suggest that CIHH suppresses β-adrenergic receptor action in right ventricular papillary muscle through decreasing receptor density and affinity, as well as membrane-bound Gsα. This mechanism may be involved in the cardiac protective effect of CIHH.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3