Chronic intermittent hypobaric hypoxia attenuates ischemic limb injury by promoting angiogenesis in mice

Author:

Tian Yanming1,Zhang Li2,Guo Xinqi1,Gao Zheng1,Zhang Yi1,Zhang Liping1,Hou Zhiyong2

Affiliation:

1. Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.

2. Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.

Abstract

This study aimed to evaluate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against limb ischemic injury. C57BL/6 mice were randomly divided into three groups: limb ischemic injury group (Ischemia, induced by ligation and excision of the left femoral artery), limb ischemia following CIHH pretreatment group (CIHH+Ischemia, simulated a 5000 m altitude hypoxia, 6 h per day for 28 days, before induction of hind-limb ischemia), and sham group (Sham). The blood flow in the mouse models of hind-limb ischemia was examined using laser doppler imaging. The functional and morphological performance of ischemic muscle was evaluated using contraction force and hematoxylin–eosin and Masson’s trichrome staining. Angiogenesis was determined by immunohistochemistry staining of the endothelial markers CD31 and CD34. The protein expressions of angiogenesis-related genes were detected using Western blot assay. Chronic ischemia resulted in reduced blood perfusion, decreased contraction tension, and morphological destruction in gastrocnemius muscle. CIHH pretreatment increased the contractile force and muscle fiber diameter and decreased necrosis and fibrosis of the ischemic muscle. Also, CIHH significantly increased the density of CD31+ and CD34+ cells and promoted the expression of angiogenesis-related molecules in ischemic muscle. These data demonstrate that CIHH has a protective effect against chronic limb ischemia by promoting angiogenesis.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3