Affiliation:
1. Department of Thoracic and Cardiovascular Surgery, University Hospital of Tromsø, N-9038 Tromsø, Norway
Abstract
In the “virtual work model,” left ventricular total mechanical energy (TME) is linearly related to myocardial oxygen consumption (MV˙o2). This relationship (MV˙o2-TME) is supposedly independent of inotropic stimulation, vascular loading, and heart rate variations. We reexamined the effect of inotropic stimulation (dopamine) on the metabolic to mechanical energy transfer in nine open-chest anesthetized pigs. Left ventricular mechanical energy was calculated using TME (mean ejection pressure × end-diastolic volume + stroke work), TMEW(end-diastolic volume reduced by unstressed ventricular volume), and the pressure-volume area (PVA). A highly linear relationship between MV˙o2and mechanical energy was found for all three indexes during control and dopamine runs ( r = 0.87–0.99). The slopes were unaltered by dopamine. y-Axis intercepts were (control vs. dopamine) as follows (in J ⋅ beat−1⋅ 100 mg−1; means ± SD): TME, 0.36 ± 0.12 vs. 0.61 ± 0.30 ( P< 0.02); TMEW, 0.43 ± 0.16 vs. 0.72 ± 0.32 ( P < 0.02); and PVA, 0.34 ± 0.13 vs. 0.60 ± 0.30 ( P < 0.02). We conclude that the virtual work model is dependent on inotropic stimulation and that new insight into myocardial chemomechanical coupling is not added by this concept.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献