Modulation of AV nodal and Hisian conduction by changes in extracellular space

Author:

Lurie Keith G.1,Sugiyama Atsushi2,McKnite Scott1,Coffeen Paul1,Hashimoto Keitaro2,Motomura Shigeru3

Affiliation:

1. Cardiac Arrhythmia Center, University of Minnesota, Minneapolis, Minnesota 55455;

2. Department of Pharmacology, Yamanashi Medical Center, 409-38 Yamanashi; and

3. Department of Pharmacology, Hirosaki Medical Center, 036 Hirosaki, Japan

Abstract

Previous studies have demonstrated that the extracellular space (ECS) component of the atrioventricular (AV) node and His bundle region is larger than the ECS in adjacent contractile myocardium. The potential physiological significance of this observation was examined in a canine blood-perfused AV nodal preparation. Mannitol, an ECS osmotic expander, was infused directly into either the AV node or His bundle region. This resulted in a significant dose-dependent increase in the AV nodal or His-ventricular conduction time and in the AV nodal effective refractory period. Mannitol infusion eventually resulted in Wenckebach block ( n = 6), which reversed with mannitol washout. The ratio of AV nodal to left ventricular ECS in tissue frozen immediately on the development of heart block ( n = 8) was significantly higher in the region of block (4.53 ± 0.61) compared with that in control preparations (2.23 ± 0.35, n = 6, P < 0.01) and donor dog hearts (2.45 ± 0.18, n = 11, P < 0.01) not exposed to mannitol. With lower mannitol rates (10% of total blood flow), AV nodal conduction times increased by 5–10% and the AV node became supersensitive to adenosine, acetylcholine, and carbachol, but not to norepinephrine. We conclude that mannitol-induced changes in AV node and His bundle ECS markedly alter conduction system electrophysiology and the sensitivity of conductive tissues to purinergic and cholinergic agonists.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3