Osmotic effects on the CA1 neuronal population in hippocampal slices with special reference to glucose

Author:

Ballyk B. A.1,Quackenbush S. J.1,Andrew R. D.1

Affiliation:

1. Department of Anatomy, Queen's University, Kingston, Ontario,Canada.

Abstract

1. Lowered osmolality promotes epileptiform activity both clinically and in the hippocampal slice preparation, but it is unclear how neurons are excited. We studied the effects of altered osmolality on the electrophysiological properties of CA1 pyramidal cells in hippocampal slices by the use of field and intracellular recordings. The excitability of these neurons under various osmotic conditions was gauged by population spike (PS) amplitude, single cell properties, and evoked synaptic input. 2. The orthodromic PS recorded in stratum pyramidale and the field excitatory postsynaptic potential (EPSP) in stratum radiatum were inversely proportional in amplitude to the artificial cerebrospinal fluid (ACSF) osmolality over a range of +/- 80 milliosmoles/kgH2O (mosM). The effect was osmotic because changes occurred within the time frame expected for cellular expansion or shrinkage and because permeable substances such as dimethyl sulfoxide or glycerol were without effect. Dilutional changes in ACSF constituents were experimentally ruled out as promoting excitability. 3. To test whether the field data resulted from a change in single-cell excitability, CA1 cells were intracellularly recorded during exposure to +/- 40 mosM ACSF over 15 min. There was no consistent effect upon CA1 resting potential, cell input resistance, or action potential threshold. 4. Osmotic alteration of orthodromic and antidromic field potentials might involve a change in axonal excitability. However, the evoked afferent volley recorded in CA1 stratum pyramidale or radiatum, which represents the compound action potential (CAP) generated in presynaptic axons, remained osmotically unresponsive with regard to amplitude, duration, or latency. This was also characteristic of CAPs evoked in isolated sciatic and vagus nerve preparations exposed to +/- 80 mosM. Therefore axonal excitability and associated extracellular current flow generated periaxonally are not significantly affected by osmotic shifts. 5. The osmotic effect on field potential amplitudes appeared to be independent of synaptic transmission because the inverse relationship with osmolality held for the antidromically evoked PS. Moreover, as recorded with respect to ground, the intracellular EPSP-inhibitory postsynaptic potential (IPSP) sequence (evoked from CA3 stratum radiatum) was not altered by osmolality. 6. The PS could occasionally be recorded intracellularly as a brief negativity interrupting the evoked EPSP. In hyposmotic ACSF, the amplitude increased and action potentials arose from the trough of the negativity as expected for a field effect. This is presumably the result of enhanced intracellular channeling of current caused by the increased extracellular resistance that accompanies cellular swelling.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3