Delayed preconditioning with adenosine is mediated by opening of ATP-sensitive K+ channels in rabbit heart

Author:

Bernardo Nelson L.1,Okubo Shinji1,Maaieh Mohammed M.1,Wood Mark A.1,Kukreja Rakesh C.1

Affiliation:

1. Division of Cardiology, Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298

Abstract

The adenosine agonist 2-chloro- N 6-cyclopentyladenosine (CCPA) induces delayed ischemic protection in vivo. We hypothesized that this protection is mediated by opening of ATP-sensitive K+(KATP) channels and increased synthesis of 72-kDa heat shock protein (HSP 72). Six groups ( n = 9–13 animals/group) of animals were studied: group I, control rabbits that received no treatment; group II, animals given glibenclamide (0.3 mg/kg iv) 30 min before ischemia; group III, animals given 5-hydroxydecanoate (5-HD; 5 mg/kg iv) 15 min before ischemia; group IV, rabbits treated with CCPA (0.1 mg/kg iv) 24 h before ischemia; and groups V and VI, CCPA-treated animals that received the KATP-channel blockers glibenclamide or 5-HD, respectively, 30 or 15 min before ischemia. All animals were subjected to ischemia by 30 min of coronary artery occlusion followed by 3 h of reperfusion. Risk area was delineated by injection of 10% Evans blue dye, and infarct size was determined by triphenyltetrazolium staining. Action potential duration (APD) was measured with an epicardial electrode. HSP 72 was measured by Western blotting. CCPA caused a significant reduction in infarct size [12.02 ± 1.0 vs. 40.0 ± 3.8% (%area at risk) in controls, P < 0.01] that was blocked by glibenclamide (36.2 ± 3.1%, P < 0.01) and 5-HD (35.0 ± 2.9%, P < 0.01). Glibenclamide and 5-HD did not change infarct size in control rabbits. These blockers significantly suppressed ischemia-induced APD shortening in control and CCPA-treated animals. CCPA treatment did not induce HSP 72 in hearts. These data suggest that adenosine-initiated delayed protection is mediated via opening of KATP channels but does not involve the synthesis of HSP 72.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3