Advanced age results in a diminished endothelial glycocalyx

Author:

Machin Daniel R.12ORCID,Bloom Samuel I.3,Campbell Robert A.24,Phuong Tam T. T.2,Gates Phillip E.2,Lesniewski Lisa A.123,Rondina Matthew T.124,Donato Anthony J.1235

Affiliation:

1. Geriatric Research, Education, and Clinical Center, Veterans Affairs Salt Lake City, Salt Lake City, Utah

2. Department of Internal Medicine, University of Utah, Salt Lake City, Utah

3. Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah

4. Molecular Medicine, University of Utah, Salt Lake City, Utah

5. Department of Biochemistry, University of Utah, Salt Lake City, Utah

Abstract

Age-related microvascular dysfunction is well characterized in rodents and humans, but little is known about the properties of the microvascular endothelial glycocalyx in advanced age. We examined the glycocalyx in microvessels of young and old male C57BL6 mice (young: 6.1 ± 0.1 mo vs. old: 24.6 ± 0.2 mo) using intravital microscopy and transmission electron microscopy and in human participants (young: 29 ± 1 yr vs. old: 60 ± 2 yr) using intravital microscopy. Glycocalyx thickness in mesenteric and skeletal muscle microvessels was 51–54% lower in old compared with young mice. We also observed 33% lower glycocalyx thickness in the sublingual microcirculation of humans in advanced age. The perfused boundary region, a marker of glycocalyx barrier function, was also obtained using an automated capture and analysis system. In advanced age, we observed a 10–22% greater perfused boundary region in mice and humans, indicating a more penetrable glycocalyx. Finally, using this automated analysis system, we examined perfused microvascular density and red blood cell (RBC) fraction. Perfused microvascular density is a marker of microvascular function that reflects the length of perfused microvessel segments in a given area; RBC fraction represents the heterogeneity in RBC presence between microvessel segments. Compared with young, the perfused microvascular density was 16–21% lower and RBC fraction was 5–14% lower in older mice and in older humans. These data provide novel evidence that, across mammalian species, a diminished glycocalyx is present in advanced age and is accompanied by markers of impaired microvascular perfusion. Age-related glycocalyx deterioration may be an important contributor to microvascular dysfunction in older adults and subsequent pathophysiology. NEW & NOTEWORTHY Advanced age is characterized by microvascular dysfunction that contributes to age-related cardiovascular diseases, but little is known about endothelial glycocalyx properties in advanced age. This study reveals, for the first time, lower glycocalyx thickness and barrier function that is accompanied by impaired microvascular perfusion in both mice and humans in advanced age.

Funder

HHS | NIH | National Institute on Aging (U.S. National Institute on Aging)

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

U.S. Department of Veterans Affairs (VA)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3