Detrimental effect of combined exercise training and eNOS overexpression on cardiac function after myocardial infarction

Author:

de Waard Monique C.,van der Velden Jolanda,Boontje Nicky M.,Dekkers Dick H. W.,van Haperen Rien,Kuster Diederik W. D.,Lamers Jos M. J.,de Crom Rini,Duncker Dirk J.

Abstract

It has been reported that exercise after myocardial infarction (MI) attenuates left ventricular (LV) pump dysfunction by normalization of myofilament function. This benefit could be due to an exercise-induced upregulation of endothelial nitric oxide synthase (eNOS) expression and activity. Consequently, we first tested the hypothesis that the effects of exercise after MI can be mimicked by elevated eNOS expression using transgenic mice with overexpression of human eNOS (eNOSTg). Both exercise and eNOSTg attenuated LV remodeling and dysfunction after MI in mice and improved cardiomyocyte maximal force development (Fmax). However, only exercise training restored myofilament Ca2+-sensitivity and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a protein levels and improved the first derivative of LV pressure at 30 mmHg. Conversely, only eNOSTg improved survival. In view of these partly complementary actions, we subsequently tested the hypothesis that combining exercise and eNOSTg would provide additional protection against LV remodeling and dysfunction after MI. Unexpectedly, the combination of exercise and eNOSTg abolished the beneficial effects on LV remodeling and dysfunction of either treatment alone. The latter was likely due to perturbations in Ca2+homeostasis, as myofilament Fmaxactually increased despite marked reductions in the phosphorylation status of several myofilament proteins, whereas the exercise-induced increases in SERCA2a protein levels were lost in eNOSTg mice. Antioxidant treatment with N-acetylcysteine or supplementation of tetrahydrobiopterin and l-arginine prevented these detrimental effects on LV function while partly restoring the phosphorylation status of myofilament proteins and further enhancing myofilament Fmax. In conclusion, the combination of exercise and elevated eNOS expression abolished the cardioprotective effects of either treatment alone after MI, which appeared to be, at least in part, the result of increased oxidative stress secondary to eNOS “uncoupling.”

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3