Evolving changes in lung interstitial fluid content after acute myocardial infarction: mechanisms and pathophysiological correlates

Author:

Guazzi Marco,Arena Ross,Guazzi Maurizio D.

Abstract

In acute myocardial infarction (AMI), alveolar interstitium edema is generally attributed to a hydrostatic imbalance. However, inflammatory burden and/or neural/hormonal/hemodynamic stimulation might injure the microvascular endothelium, eliciting interstitial overflow and altering alveolar-capillary gas diffusion. In 118 patients with AMI (ejection fraction ≥50% and wedge pulmonary pressure <16 mmHg), admission alveolar-capillary gas diffusing membrane conductance (DM) averaged 35.1 ml·min−1·mmHg−1 and was 27% lower than in 25 controls ( P < 0.01). Infusion of saline in the pulmonary circulation (to test sodium exchange across the pulmonary capillary wall) lowered DM by 7.1% ( P < 0.01) and was neutral in controls. At 1 wk, 83 patients that showed DM improvement >5% were assigned to group 1, and 28 patients with DM worsening >5% were assigned to group 2. Saline retained efficacy in group 2 and had no DM effect in group 1 (supporting a link between changes in baseline DM and those in microvascular salt exchange). Ventricular function was unchanged in group 1, whereas group 2 had developed diastolic dysfunction. At 1 yr, 3% of cases in group 1 and 37% of cases in group 2 had alveolar edema. Thus, AMI is frequently associated with abnormal pulmonary microvascular sodium transport/water conductance that, in the case of ventricular dysfunction supervenience, may persist and worsen the outcome. In 37 AMI similar patients and 11 control subjects, nitric oxide overexpression with l-arginine improved baseline DM and in AMI patients prevented DM reduction by saline, suggesting a mechanistic role of an impaired nitric oxide pathway in the microvascular barrier dysfunction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3