Endothelium-specific sepiapterin reductase deficiency in DOCA-salt hypertension

Author:

Youn Ji Youn1,Wang Ting1,Blair John1,Laude Karine M.2,Oak Jeong-Ho1,McCann Louise A.2,Harrison David G.2,Cai Hua1

Affiliation:

1. Division of Molecular Medicine, Cardiovascular Research Laboratories, Departments of Anesthesiology and Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California;

2. Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee

Abstract

The endothelial nitric oxide synthase (eNOS) requires tetrahydrobiopterin (H4B) as a cofactor and, in its absence, produces superoxide (O2·−) rather than nitric oxide (NO·), a condition referred to as eNOS uncoupling. DOCA-salt-induced hypertension is associated with H4B oxidation and uncoupling of eNOS. The present study investigated whether administration of sepiapterin or H4B recouples eNOS in DOCA-salt hypertension. Bioavailable NO·detected by electron spin resonance was markedly reduced in aortas of DOCA-salt hypertensive mice. Preincubation with sepiapterin (10 μmol/l for 30 min) failed to improve NO·bioavailability in hypertensive aortas while it augmented NO·production from control vessels, implicating a hypertension-associated deficiency in sepiapterin reductase (SPR), the rate-limiting enzyme for sepiapterin conversion to H4B. Indeed, a decreased SPR expression was observed in aortic endothelial cells, but not in endothelium-denuded aortic remains, implicating an endothelium-specific SPR deficiency. Administration of hypertensive aortas with H4B (10 μmol/l, 30 min) partially restored vascular NO·production. Combined administration of H4B and the NADPH oxidase inhibitor apocynin (100 μmol/l, 30 min) fully restored NO·bioavailability while reducing O2·−production. In angiotensin II-induced hypertension, however, aortic endothelial SPR expression was not affected. In summary, administration of sepiapterin is not effective in recoupling eNOS in DOCA-salt hypertension, due to an endothelium-specific loss in SPR, whereas coadministration of H4B and apocynin is highly efficient in recoupling eNOS. This is consistent with our previous observations that in angiotensin II hypertension, endothelial deficiency in dihydrofolate reductase is alternatively responsible for uncoupling of eNOS. Taken together, these data indicate that strategies specifically targeting at different H4B metabolic enzymes might be necessary in restoring eNOS function in different types of hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3