Inhibition of vascular smooth muscle cell proliferation by chronic hemin treatment

Author:

Chang Tuanjie,Wu Lingyun,Wang Rui

Abstract

Hemin, an oxidized form of heme, is an essential regulator of gene expression and cell cycle progression. Our laboratory previously reported ( 34 ) that chronic hemin treatment of spontaneously hypertensive rats reversed the eutrophic inward remodeling of small peripheral arteries. Whether long-term treatment of cultured vascular smooth muscle cells (VSMCs) with hemin alters the proliferation status of these cells has been unknown. In the present study, hemin treatment at 5 μM for 4, 7, 14, and 21 days significantly inhibited the proliferation of cultured rat aortic VSMCs (A-10 cells) by arresting cells at G0/G1 phases so as to decelerate cell cycle progression. Heme oxygenase (HO) activity and inducible HO-1 protein expression were significantly increased by hemin treatment. HO inhibitor tin protoporphyrin IX (SnPP) abolished the effects of hemin on cell proliferation and HO activity. Interestingly, hemin-induced HO-1 expression was further increased in the presence of SnPP. Hemin treatment had no significant effect on the expression of constitutive HO-2. Expression of p21 protein and the level of reactive oxygen species (ROS) were decreased by hemin treatment, which was reversed by application of SnPP. After removal of hemin from culture medium, inhibited cell proliferation and increased HO-1 expression in VSMCs were returned to control level within 1 wk. Transfection with HO-1 small interfering RNA significantly knocked down HO-1 expression and decreased HO activity, but had no effect on HO-2 expression, in cells treated with or without hemin for 7 days. The inhibitory effect of hemin on cell proliferation was abolished in HO-1 silenced cells. It is concluded that induction of HO-1 and, consequently, increased HO activity are responsible for the chronic inhibitory effect of hemin on VSMC proliferation. Changes in the levels of p21 and ROS might also participate in the cellular effects of hemin.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3