Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress

Author:

CLARK James E.12,FORESTI Roberta2,GREEN Colin J.12,MOTTERLINI Roberto2

Affiliation:

1. Vascular Biology Unit, RAFT Institute of Plastic Surgery, Leopold Muller Building, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, U.K.

2. Department of Surgical Research, Northwick Park Institute for Medical Research, Harrow, Middlesex HA1 3UJ, U.K.

Abstract

The inducible isoform of haem oxygenase (HO-1) has been proposed as an effective system to counteract oxidant-induced cell injury. In several circumstances, this cytoprotective effect has been attributed to increased generation of the antioxidant bilirubin during haem degradation by HO-1. However, a direct implication for HO-1-derived bilirubin in protection against oxidative stress remains to be established. In the present study, we examined the dynamics of HO-1 expression and bilirubin production after stimulation of vascular smooth-muscle cells with hemin, a potent inducer of the HO-1 gene. We found that hemin-mediated increase in HO-1 protein expression and haem oxygenase activity is associated with augmented bilirubin levels. The majority of bilirubin production occurred early after exposure of cells to hemin. Hemin pre-treatment also resulted in high resistance to cell injury caused by an oxidant-generating system. Interestingly, this protective effect was manifest only when cells were actively producing bilirubin as a consequence of increased haem availability and utilization by HO-1. Tin protoporphyrin IX, an inhibitor of haem oxygenase activity, significantly reduced bilirubin generation and reversed cellular protection afforded by hemin treatment. Furthermore, addition of bilirubin to the culture medium markedly reduced the cytotoxicity produced by oxidants. Our findings provide direct evidence that bilirubin generated after up-regulation of the HO-1 pathway is cytoprotective against oxidative stress.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3