Affiliation:
1. Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
2. Department of Physiology, University of Auckland, New Zealand
3. Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
Abstract
Patients with heart failure (HF) have increased levels of cardiac norepinephrine (NE) spillover, which is an independent predictor of mortality. We hypothesized that this increase in NE spillover in HF depends not only on increases in sympathetic nerve activity (SNA) but also on changes in the mechanisms controlling NE release and reuptake. Such changes would lead to differences between the increases in directly recorded SNA and NE spillover to the heart in HF. Experiments were conducted in conscious sheep implanted with electrodes to record cardiac SNA (CSNA). In addition, arterial pressure and cardiac NE spillover were determined. In HF, the levels of both CSNA (102 ± 8 vs. 45 ± 8 bursts/min, P < 0.05) and cardiac NE spillover (21.6 ± 3.8 vs. 3.9 ± 0.8 pmol/min, P < 0.05) were significantly higher than in normal control animals. In HF, baroreflex control of cardiac NE spillover was impaired, and when CSNA was abolished by increasing arterial pressure, there was no reduction in cardiac NE spillover. A decrease in cardiac filling pressures in the HF group led to a significant increase in CSNA, but it significantly decreased cardiac NE spillover. In HF, the levels of cardiac NE spillover were enhanced above those expected from the high level of SNA, suggesting that changes in mechanisms controlling NE release and reuptake further increase the high level of NE at the heart, which will act to enhance the deleterious effects of increased CSNA in HF. NEW & NOTEWORTHY This is the first study, to our knowledge, to compare direct recordings of cardiac sympathetic nerve activity with simultaneously measured cardiac norepinephrine (NE) spillover. Our results indicate that in heart failure, increased cardiac sympathetic nerve activity is a major contributor to the increased NE spillover. In addition, there is enhanced NE spillover for the levels of synaptic nerve activity.
Funder
Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献