Flow-mediated dilation in human brachial artery after different circulatory occlusion conditions

Author:

Betik Andrew C.1,Luckham Victoria B.1,Hughson Richard L.1

Affiliation:

1. Cardiorespiratory and Vascular Dynamics Laboratory, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

Different magnitudes and durations of postocclusion reactive hyperemia were achieved by occluding different volumes of tissue with and without ischemic exercise to test the hypotheses that flow-mediated dilation (FMD) of the brachial artery would depend on the increase in peak flow rate or shear stress and that the position of the occlusion cuff would affect the response. The brachial artery FMD response was observed by high-frequency ultrasound imaging with curve fitting to minimize the effects of random measurement error in eight healthy, young, nonsmoking men. Reactive hyperemia was graded by 5-min occlusion distal to the measurement site at the wrist and the forearm and proximal to the site in the upper arm. Flow was further increased by exercise during occlusion at the wrist and forearm positions. For the two wrist occlusion conditions, flow increased eightfold and FMD was only 1 to 2% ( P > 0.05). After the forearm and upper arm occlusions, blood flow was almost identical but FMD after forearm occlusions was 3.4% ( P < 0.05), whereas it was significantly greater (6.6%, P < 0.05) and more prolonged after proximal occlusion. Forearm occlusion plus exercise caused a greater and more prolonged increase in blood flow, yet FMD (7.0%) was qualitatively and quantitatively similar to that after proximal occlusion. Overall, the magnitude of FMD was significantly correlated with peak forearm blood flow ( r = 0.59, P < 0.001), peak shear rate ( r = 0.49, P < 0.002), and total 5-min reactive hyperemia ( r = 0.52, P < 0.001). The prolonged FMD after upper arm occlusion suggests that the mechanism for FMD differs with occlusion cuff position.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3