Pioglitazone reduces angiotensin II-induced COX-2 expression through inhibition of ROS production and ET-1 transcription in vascular cells from spontaneously hypertensive rats

Author:

Pérez-Girón Jose V.1,Palacios Roberto1,Martín Angela1,Hernanz Raquel1,Aguado Andrea2,Martínez-Revelles Sonia2,Barrús María T.1,Salaices Mercedes2,Alonso María J.1

Affiliation:

1. Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Alcorcón, Spain; and

2. Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain

Abstract

Glitazones have anti-inflammatory properties by interfering with the transcription of proinflammatory genes, such as cyclooxygenase (COX)-2, and with ROS production, which are increased in hypertension. This study analyzed whether pioglitazone modulates COX-2 expression in hypertension by interfering with ROS and endothelin (ET)-1. In vivo, pioglitazone (2.5 mg·kg−1·day−1, 28 days) reduced the greater levels of COX-2, pre-pro-ET-1, and NADPH oxidase (NOX) expression and activity as well as O2·− production found in aortas from spontaneously hypertensive rats (SHRs). ANG II increased COX-2 and pre-pro-ET-1 levels more in cultured vascular smooth muscle cells from hypertensive rats compared with normotensive rats. The ETA receptor antagonist BQ-123 reduced ANG II-induced COX-2 expression in SHR cells. ANG II also increased NOX-1 expression, NOX activity, and superoxide production in SHR cells; the selective NOX-1 inhibitor ML-171 and catalase reduced ANG II-induced COX-2 and ET-1 transcription. ANG II also increased c-Jun transcription and phospho-JNK1/2, phospho-c-Jun, and p65 NF-κB subunit nuclear protein expression. SP-600125 and lactacystin, JNK and NF-κB inhibitors, respectively, reduced ANG II-induced ET-1, COX-2, and NOX-1 levels and NOX activity. Pioglitazone reduced the effects of ANG II on NOX activity, NOX-1, pre-pro-ET-1, COX-2, and c-Jun mRNA levels, JNK activation, and nuclear phospho-c-Jun and p65 expression. In conclusion, ROS production and ET-1 are involved in ANG II-induced COX-2 expression in SHRs, explaining the greater COX-2 expression observed in this strain. Furthermore, pioglitazone inhibits ANG II-induced COX-2 expression likely by interfering with NF-κB and activator protein-1 proinflammatory pathways and downregulating ROS production and ET-1 transcription, thus contributing to the anti-inflammatory properties of glitazones.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3