Adipose c-Jun NH2-terminal kinase promotes angiotensin II-induced and deoxycorticosterone acetate salt-induced hypertension and vascular dysfunction by inhibition of adiponectin production and activation of SGK1 in mice

Author:

Gan Jing1,Shi Yaru23,Zhao Ruyi2,Li Dan24,Jin Hua2,Wu Maolan2,Liu Zhen2,Li Xiaokun2,Xu Aimin5,Li Yulin6,Lin Zhuofeng17,Wu Fan2

Affiliation:

1. Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University

2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou

3. Department of Pharmacy, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui

4. Department of clinical pharmacy, the Forth People's Hospital of Liaocheng, Liaocheng

5. State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong

6. Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing

7. The laboratory of Animal Center, Wenzhou Medical University, Wenzhou, China

Abstract

Background: Adipose c-Jun NH2-terminal kinase 1/2 (JNK1/2) is a central mediator involved in the development of obesity and its complications. However, the roles of adipose JNK1/2 in hypertension remain elusive. Here we explored the role of adipose JNK1/2 in hypertension. Methods and results: The roles of adipose JNK1/2 in hypertension were investigated by evaluating the impact of adipose JNK1/2 inactivation in both angiotensin II (Ang II)-induced and deoxycorticosterone acetate (DOCA) salt-induced hypertensive mice. Specific inactivation of JNK1/2 in adipocytes significantly alleviates Ang II-induced and DOCA salt-induced hypertension and target organ damage in mice. Interestingly, such beneficial effects are also observed in hypertensive mice after oral administration of JNK1/2 inhibitor SP600125. Mechanistically, adipose JNK1/2 acts on adipocytes to reduce the production of adiponectin (APN), then leads to promote serum and glucocorticoid-regulated kinase 1 (SGK1) phosphorylation and increases epithelial Na+ channel α-subunit (ENaCα) expression in both renal cells and adipocytes, respectively, finally exacerbates Na+ retention. In addition, chronic treatment of recombinant mouse APN significantly augments the beneficial effects of adipose JNK1/2 inactivation in DOCA salt-induced hypertension. By contrast, the blood pressure-lowering effects of adipose JNK1/2 inactivation are abrogated by adenovirus-mediated SGK1 overexpression in Ang II -treated adipose JNK1/2 inactivation mice. Conclusion: Adipose JNK1/2 promotes hypertension and targets organ impairment via fine-tuning the multiorgan crosstalk among adipose tissue, kidney, and blood vessels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3