Angiotensin II-induced negative inotropy in rat ventricular myocytes: role of reactive oxygen species and p38 MAPK

Author:

Palomeque Julieta,Sapia Luciana,Hajjar Roger J.,Mattiazzi Alicia,Vila Petroff Martín

Abstract

The octapeptide angiotensin II (ANG II) can modulate cardiac contractility and is increased in heart failure, where contractile function is impaired. In rat cardiac myocytes, 1 μM of ANG II produces a negative inotropic effect (NIE) (24.6 ± 5% reduction). However, the subcellular signaling involved in this effect remains elusive. We examined the mechanisms and signaling events involved in the reduction in contractile function induced by the peptide in indo-1-loaded rat cardiomyocytes. The results showed that the NIE of ANG II was not associated with a parallel decrease in the intracellular Ca2+transient, indicating that a decrease in myofilament responsiveness to Ca2+underlies the reduction in contractility. We assessed the role of PKC, tyrosine kinases, reactive oxygen species (ROS), and mitogen-activated protein kinases (MAPKs) in the NIE of the peptide. Pretreatment of cells with the NAD(P)H oxidase inhibitor diphenyleneiodonium chloride or with the superoxide scavenger 4,5-dihydroxy-1,3-benzene-disulfonic acid did not affect the ANG II-induced NIE. Moreover, ANG II-induced ROS production, after 20 min of incubation with the peptide, could not be detected with the use of either the fluorophore 5-(6)-chloromethyl-2′, 7′-dichlorodihydrofluorecein diacetate or lucigenin-enhanced chemiluminescence. In contrast, the ANG II-induced NIE was abrogated by the inhibitors of PKC (calphostin C), tyrosine kinase (genistein), and p38 MAPK (SB-202190). Furthermore, the NIE was significantly exacerbated (60 ± 10% reduction) by p38 MAPK overexpression. These results exclude the participation of ROS in the NIE of the peptide and point to PKC and tyrosine kinase as upstream mediators. Furthermore, they reveal p38 MAPK as the putative effector of the reduction in myofilament responsiveness to Ca2+and the decrease in contractility induced by the peptide.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3