Insulin resistance and the modulation of rat cardiac K+ currents

Author:

Shimoni Y.1,Severson D.2,Ewart H. S.2

Affiliation:

1. Department of Physiology and Biophysics and

2. Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada T2N 4N1

Abstract

K+ currents were measured using a whole cell voltage-clamp method in enzymatically isolated rat ventricular myocytes obtained from two hyperinsulinemic, insulin-resistant models. Fructose-fed rats as well as genetically obese rats, both of which are resistant to the metabolic effects of insulin, were used. The normal augmentation of a calcium-independent sustained K+ current was reduced or abolished in insulin-resistant states. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadyl sulfate (3–4 wk treatment or after 5–6 h in vitro) enhanced the sustained K+ current. The in vitro effect of vanadyl was blocked by cycloheximide. Insulin resistance of the K+current was not reversed by vanadyl sulfate. The results show that insulin resistance is expressed in terms of insulin actions on ion channels, in addition to its actions on metabolism. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadate compounds, which mimic the effects of insulin on metabolism, also mimic the augmenting effects of insulin on a cardiac K+ current in a manner suggesting synthesis of new channels.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3