Modulation of mouse cardiac function in vivo by eNOS and ANP

Author:

Gyurko Robert1,Kuhlencordt Peter1,Fishman Mark C.1,Huang Paul L.1

Affiliation:

1. Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129

Abstract

To study the role of endothelial nitric oxide synthase (eNOS) in cardiac function, we compared eNOS expression, contractility, and relaxation in the left ventricles of wild-type and eNOS-deficient mice. eNOS immunostaining is localized to the macro- and microvascular endothelium throughout the myocardium in wild-type mice and is absent in eNOS−/− mice. Whereas blood pressure is elevated in eNOS−/− mice, baseline cardiac contractility (dP/d t max) is similar in wild-type and eNOS−/− mice (9,673 ± 2,447 and 9,928 ± 1,566 mmHg/s, respectively). The β-adrenergic agonist isoproterenol (Iso) at doses of ≥1 ng causes enhanced increases in dP/d t max in eNOS−/− mice compared with wild-type controls in vivo ( P < 0.01) as well as in Langendorff isolated heart preparations ( P < 0.02). β-Adrenergic receptor binding (Bmax) is not significantly different in the two groups of animals (Bmax = 41.4 ± 9.4 and 36.1 ± 5.1 fmol/mg for wild-type and eNOS−/−). Iso-stimulated ventricular relaxation is also enhanced in the eNOS−/− mice, as measured by dP/d t min in the isolated heart. However, baseline ventricular relaxation is normal in eNOS−/− mice (τ = 5.2 ± 1.0 and 5.6 ± 1.5 ms for wild-type and eNOS−/−, respectively), whereas it is impaired in wild-type mice after NOS inhibition (τ = 8.3 ± 2.4 ms). cGMP levels in the left ventricle are unaffected by eNOS gene deletion (wild-type: 3.1 ± 0.8 pmol/mg, eNOS−/−: 3.1 ± 0.6 pmol/mg), leading us to examine the level of another physiological regulator of cGMP. Atrial natriuretic peptide (ANP) expression is markedly upregulated in the eNOS−/− mice, and exogenous ANP restores ventricular relaxation in wild-type mice treated with NOS inhibitors. These results suggest that eNOS attenuates both inotropic and lusitropic responses to β-adrenergic stimulation, and it also appears to regulate baseline ventricular relaxation in conjunction with ANP.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3