Myocyte cytoskeletal disorganization and right heart failure in hypoxia-induced neonatal pulmonary hypertension

Author:

Lemler Matthew S.1,Bies Roger D.2,Frid Maria G.3,Sastravaha Amornrate2,Zisman Lawrence S.2,Bohlmeyer Teresa2,Gerdes A. Martin4,Reeves John T.32,Stenmark Kurt R.3

Affiliation:

1. Division of Cardiology and

2. Division of Cardiology, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262; and

3. Division of Critical Care and Developmental Lung Biology, Department of Pediatrics, and

4. Department of Anatomy and Structural Biology, University of South Dakota School of Medicine, Vermillion, South Dakota 57069

Abstract

Previous studies have demonstrated that environmentally or genetically induced changes in the intracellular proteins that compose the cytoskeleton can contribute to heart failure. Because neonatal right ventricular myocytes are immature and are in the process of significant cytoskeletal change, we hypothesized that they may be particularly susceptible to pressure stress. Newborn calves exposed to hypobaric hypoxia (barometric pressure = 430 mmHg) for 14 days developed severe pulmonary hypertension (pulmonary arterial pressure = 101 ± 6 vs. 27 ± 1 mmHg) and right heart failure compared with age-matched controls. Light microscopy showed partial loss of myocardial striations in the failing neonatal right but not left ventricles and in neither ventricle of adolescent cattle dying of altitude-induced right heart failure. In neonatal calves, immunohistochemical analysis of the cytoskeletal proteins (vinculin, metavinculin, desmin, vimentin, and cadherin) showed selectively, within the failing right ventricles, patchy areas characterized by loss and disorganization of costameres and intercalated discs. Within myocytes from the failing ventricles, vinculin and desmin were observed to redistribute diffusely within the cytosol, metavinculin appeared in disorganized clumps, and vimentin immunoreactivity was markedly decreased. Western blot analysis of the failing right ventricular myocardium showed, compared with control, vinculin and desmin to be little changed in total content but redistributed from insoluble (structural) to soluble (cytosolic) fractions; metavinculin total content was markedly decreased, tubulin content increased, particularly in the structural fraction, and cadherin total content and distribution were unchanged. We conclude that hypoxic pulmonary hypertensive-induced neonatal right ventricular failure is associated with disorganization of the cytoskeletal architecture.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3