Trauma-hemorrhage and resuscitation in the mouse: effects on cardiac output and organ blood flow

Author:

Wang P.1,Ba Z. F.1,Burkhardt J.1,Chaudry I. H.1

Affiliation:

1. Department of Surgery, Michigan State University, East Lansing48824.

Abstract

Although mice are widely used for the study of immune consequences of hemorrhage, the changes of cardiac output (CO) and blood flow (BF) in response to trauma and hemorrhage in this species have not been well defined. To study this, nonheparinized C3H/HeN mice (n = 6 per group) underwent laparotomy (i.e., trauma induced), were bled to a mean arterial pressure of 35 mmHg, and maintained for 90 min by withdrawing more blood or returning Ringer lactate. The animals were then resuscitated with four times the volume of maximal bleedout in the form of Ringer lactate over 60 min. Sham-operated mice underwent the same procedure but were neither bled nor resuscitated. At the end of hemorrhage, 60 min postresuscitation, or corresponding time after sham operation, CO and BF were determined by radioactive microspheres. Results indicate that CO and BF decreased significantly at the end of hemorrhage. Resuscitation, however, restored CO and BF in various organs except the brain and skeletal muscle. Despite this, 9 of 16 mice died within 6 days postresuscitation, whereas none of sham mice died (n = 16 per group in this additional study). Therefore, we have developed a nonheparinized model of trauma-hemorrhage and resuscitation in mice that is associated with late mortality. Furthermore, the microsphere technique provides a reliable method for assessing CO and BF in mice. Thus it may be possible to study the correlation between cardiovascular and immunologic alterations under such conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3