Sarcoplasmic reticulum-related changes in cytosolic calcium in pressure-overload-induced feline LV hypertrophy

Author:

Bailey B. A.1,Houser S. R.1

Affiliation:

1. Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.

Abstract

Alterations in Ca2+ homeostasis that involve the sarcoplasmic reticulum (SR) were studied in feline left ventricular (LV) myocytes isolated from hearts with LV hypertrophy induced by slow, progressive pressure overload. At death, severe hypertrophy was evidenced by increased heart weight-to-body weight ratio (8.4 +/- 0.6 vs. 4.2 +/- 0.2 g/kg in controls). Steady-state Ca2+ transients (measured as. indo 1 fluorescence at 410 nm/480 nm; I410/I480) in LV hypertrophy (LVH) myocytes had diminished peak amplitudes (I410/I480 2.28 +/- 0.07 vs. 2.53 +/- 0.07 in controls) and prolonged durations (0.75 +/- 0.03 vs. 0.59 +/- 0.02 s in controls). The magnitude of shortening was reduced and the contractile duration was prolonged in LVH myocytes. The idea that changes in SR function are responsible for these alterations in the Ca2+ transient was tested by studying two aspects of SR-related Ca2+ homeostasis. Restitution of releasable SR Ca2+ was studied by measuring indo 1 transients and contractions during premature beats. The time course of restitution of both the indo 1 transient and contraction of hypertrophy myocytes was significantly slower than in controls. These data suggest that restitution of releasable SR Ca2+ is slowed in hypertrophy myocytes. The reduction of the indo 1 transient and contraction in beats following long rest periods (rest decay) was measured to determine the rate of Ca2+ loss from the SR. Rest decay was significantly (P < 0.05) more pronounced in hypertrophy myocytes, suggesting that Ca2+ loss from the SR is accelerated in these myocytes. (ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3