Single HERG delayed rectifier K+ channels expressed in Xenopus oocytes

Author:

Zou A.1,Curran M. E.1,Keating M. T.1,Sanguinetti M. C.1

Affiliation:

1. Cardiology Division, University of Utah Health Sciences Center, SaltLake City 84132, USA.

Abstract

HERG is a K+ channel with properties similar to the rapidly activating component (I(Kr)) of delayed rectifier K+ current, which is important for repolarization of human cardiac myocytes. In this study, we have characterized the single-channel properties of HERG expressed in Xenopus oocytes. Currents were measured in cell-attached patches with an extracellular K concentration of 120 mM. The single HERG channel conductance, determined at test potentials between -50 and -110 mV, was 12.1 +/- 0.6 pS. At positive test potentials (+40 to +80 mV), the probability of channel opening was low and slope conductance was 5.1 +/- 0.6 pS. The mean channel open times at -90 mV were 2.9 +/- 0.5 and 11.8 +/- 1.0 ms, and the mean channel closed times were 0.54 +/- 0.02 and 14.5 +/- 5.3 ms. Single HERG channels were blocked by MK-499, a class III antiarrhythmic agent that blocks I(Kr) in cardiac myocytes. The development of block was more rapid in inside-out patches than in cell-attached patches or in whole cell recordings, indicating that block occurs from the cytoplasmic side of the membrane. The single-channel properties of HERG are similar to I(Kr) channels of isolated cardiac myocytes, which provides further evidence that HERG proteins coassemble to form I(Kr) channels.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3