Potassium dependent structural changes in the selectivity filter of HERG potassium channels

Author:

Lau Carus H.Y.ORCID,Flood Emelie,Hunter Mark J.,Williams-Noonan Billy J,Corbett Karen M.,Ng Chai-Ann,Bouwer James C.,Stewart Alastair G.,Perozo Eduardo,Allen Toby W.,Vandenberg Jamie I.ORCID

Abstract

AbstractThe fine tuning of biological electrical signaling is mediated by variations in the rates of opening and closing of gates that control ion flux through different ion channels. Human ether-a-go-go related gene (HERG) potassium channels have uniquely rapid inactivation kinetics which are critical to the role they play in regulating cardiac electrical activity. Here, we have exploited the K+sensitivity of HERG inactivation to determine structures of both a conductive and non-conductive selectivity filter structure of HERG. We propose that inactivation is the result of a high propensity for flipping of the selectivity filter valine carbonyl oxygens. Molecular dynamics simulations point to a low energy barrier, and hence rapid kinetics, for flipping of the valine 625 carbonyl oxygens facilitated by a previously unrecognized interaction between S620 and Y616 that stabilizes the transition state between conducting and non-conducting structures. Our model represents a new mechanism by which ion channels fine tune their activity that explains the uniquely rapid inactivation kinetics of HERG.HighlightsStructures of a conductive and non-conductive HERG selectivity filter have been determined.Reduced potassium causes flipping of selectivity filter valine carbonyl oxygens.The sidechain of S620 on the pore helix coordinates distinct sets of interactions between conductive, non-conductive, and transition states.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3