Phospholamban deficiency alters inactivation kinetics of L-type Ca2+ channels in mouse ventricular myocytes

Author:

Masaki H.1,Sato Y.1,Luo W.1,Kranias E. G.1,Yatani A.1

Affiliation:

1. Department of Pharmacology and Cell Biophysics, University ofCincinnati College of Medicine, Ohio 45267, USA.

Abstract

Entry of Ca2+ through voltage-dependent L-type Ca2+ channels is critical for contraction in cardiac cells. In recent studies, cells from phospholamban (PLB) knockout (PLB-KO) mouse hearts showed significantly increased basal contractility with enhanced sarcoplasmic reticulum (SR) Ca2+ uptake. To test whether these effects of PLB ablation were associated with alterations of L-type Ca2+ channel function, we compared the properties of Ca2+ channel currents (I(Ca)) in ventricular myocytes isolated from wild-type (WT) and PLB-KO mouse hearts. L-type Ca2+ channels from mouse myocytes exhibited voltage-dependent gating and sensitivity to dihydropyridine drugs, similar to other mammalian species, and these properties were not altered by PLB ablation. I(Ca) from both WT and PLB-KO cells revealed two (fast and slow) components of inactivation kinetics. However, the proportion of the faster component was significantly larger in PLB-KO cells. Ryanodine (10 microM) reduced the rate of inactivation of I(Ca) for both WT and PLB-KO cells, but the reduction was more prominent in PLB-KO cells compared with WT cells. In contrast, the inactivation in a Ba2+ solution could be fitted by a single exponential similar to the slower component in Ca2+, and this was not altered in PLB-KO cells. The increase in the fast Ca2+-dependent inactivation component in PLB-KO cells supports the hypothesis that Ca2+ released from the SR regulates Ca2+ channel inactivation by affecting the levels of Ca2+ near the channel and suggests that this may be an important compensatory mechanism in the hyperdynamic PLB-KO heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3