Myogenic contribution to agonist-induced renal vasoconstriction during normoxia and hypoxia

Author:

Eichinger M. R.1,Resta J. M.1,Walker B. R.1

Affiliation:

1. Department of Physiology, University of New Mexico, School ofMedicine, Albuquerque 87131, USA.

Abstract

Acute hypoxia attenuates agonist-induced constrictor and pressor responses in conscious rats, and a recent report suggests that hypoxia may also diminish myogenic reactivity in isolated, perfused rat kidneys. Thus we hypothesized that the diminished responsiveness to pressor agents during hypoxia is caused by an impairment of myogenic reactivity. Male Sprague-Dawley rats were instrumented with a pulsed Doppler flow probe on the left renal artery, an aortic vascular occluder cuff immediately above the left renal artery to control renal perfusion pressure, and catheters were inserted to measure systemic arterial blood pressure and renal arterial pressure (RAP) and for administration of agents. Animals were studied under normoxic or acute hypoxic (fractional concentration of O2 in inspired gials = 0.12) conditions and were administered phenylephrine, arginine vasopressin, or angiotensin II. To determine the myogenic (pressure-dependent) component of agonist-induced vasoconstriction, renal vascular resistance was calculated during agonist infusion with RAP uncontrolled and with RAP controlled to preinfusion levels. Significant myogenic components of agonist-induced renal vasoconstriction were evident with all pressor agents used. However, hypoxia did not attenuate agonist-induced, pressure-dependent increases in renal vascular resistance. We conclude that the reduced vasoreactivity associated with acute hypoxia is not caused by diminished myogenic reactivity.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrogen sulfide regulation of renal and mesenteric blood flow;American Journal of Physiology-Heart and Circulatory Physiology;2019-11-01

2. Vasopressin in septic shock: effects on pancreatic, renal, and hepatic blood flow;Critical Care;2007

3. Correlation of HO-1 expression with onset and reversal of hypoxia-induced vasoconstrictor hyporeactivity;American Journal of Physiology-Heart and Circulatory Physiology;2001-07-01

4. Renal vasodilatory influence of endogenous carbon monoxide in chronically hypoxic rats;American Journal of Physiology-Heart and Circulatory Physiology;2000-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3