Renal vasodilatory influence of endogenous carbon monoxide in chronically hypoxic rats

Author:

O'Donaughy Theresa L.1,Walker Benjimen R.1

Affiliation:

1. Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-5218

Abstract

Chronic hypoxia (CH) attenuates systemic vasoconstriction to a variety of agonists in conscious rats. Recent evidence suggests that similarly diminished responses to vasoconstrictors in aortic rings from CH rats may be due to increased endothelial heme oxygenase (HO) activity and enhanced production of the vasodilator carbon monoxide (CO). Thus we hypothesized that a hypoxia-induced increase in HO activity is responsible for decreased vasoconstrictor responsiveness observed in conscious CH rats. CH (4 wk at 0.5 atm) and control rats were renal denervated and instrumented for the measurement of renal blood flow (RBF) and blood pressure. First, renal vasoconstrictor responses to graded intravenous infusion of phenylephrine (PE) were assessed in conscious rats. CH rats demonstrated significantly diminished renal vasoconstrictor responses to PE compared with control responses that persisted even with acute restoration of normoxia. In additional experiments, CH rats exhibited increased renal vascular resistance and decreased RBF in response to the HO inhibitor zinc protoporphyrin IX (11 μmol/kg iv), whereas renal hemodynamics were unaffected by the inhibitor in control animals. Furthermore, we demonstrated greater HO enzyme activity in renal tissue from CH rats compared with controls. These data suggest that enhanced HO activity contributes a tonic vasodilatory influence in the renal vasculature of CH rats that may be responsible for the diminished sensitivity to vasoconstrictor agonists observed under these conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3