Progressive apoptotic cell death triggered by transient oxidative insult in H9c2 rat ventricular cells: a novel pattern of apoptosis and the mechanisms

Author:

Han Hong,Long Hong,Wang Huizhen,Wang Jingxiong,Zhang Yiqiang,Wang Zhiguo

Abstract

Many pathophysiological processes are associated with oxidative stress and progressive cell death. Oxidative stress is an apoptotic inducer that is known to cause rapid cell death. Here we show that a brief oxidative insult (5-min exposure to 400 μM H2O2), although it did not kill H9c2 rat ventricular cells during the exposure, triggered an intracellular death cascade leading to delayed time-dependent cell death starting from 1 h after the insult had been withdrawn, and this post-H2O2 cell death cumulated gradually, reaching a maximum level 8 h after H2O2 withdrawal. By comparison, sustained exposure to H2O2 caused complete cell death within a narrow time frame (2 h). The time-dependent post-H2O2 cell death was typical of apoptosis, both morphologically (cell shrinkage and nuclear condensation) and biochemically (DNA fragmentation, extracellular exposure of phosphatidylserines, and caspase-3 activation). A dichlorofluorescein fluorescent signal showed a time-dependent endogenous increase of reactive oxygen species (ROS) production, which was almost abolished by inhibition of the mitochondrial electron transport chain. Application of antioxidants (vitamin E or DTT) before H2O2 addition or after H2O2 withdrawal prevented the H2O2-triggered progressive ROS production and apoptosis. Sequential appearance of events associated with activation of the mitochondrial death pathway was found, including progressive dissipation of mitochondrial membrane potential, cytochrome c release, and late activation of caspase-3. In conclusion, transient oxidative stress triggers an intrinsic program leading to self-sustained apoptosis in H9c2 cells via cumulative production of mitochondrial ROS and subsequent activation of the mitochondrial death pathway. This pattern of apoptosis may contribute to the progressive and long-lasting cell loss in some degenerative diseases.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3