Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo

Author:

Yang Yingbo,Zhu Wei-Zhong,Joiner Mei-ling,Zhang Rong,Oddis Carmine V.,Hou Yue,Yang Jinying,Price Edward E.,Gleaves Linda,Eren Mesut,Ni Gemin,Vaughan Douglas E.,Xiao Rui-Ping,Anderson Mark E.

Abstract

Inhibition of the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) or depletion of sarcoplasmic reticulum (SR) Ca2+ stores protects against apoptosis from excessive isoproterenol (Iso) stimulation in cultured ventricular myocytes, suggesting that CaMKII inhibition could be a novel approach to reducing cell death in conditions of increased adrenergic tone, such as myocardial infarction (MI), in vivo. We used mice with genetic myocardial CaMKII inhibition due to transgenic expression of a highly specific CaMKII inhibitory peptide (AC3-I) to test whether CaMKII was important for apoptosis in vivo. A second line of mice expressed a scrambled, inactive form of AC3-I (AC3-C). AC3-C and wild-type (WT) littermates were used as controls. AC3-I mice have reduced SR Ca2+ content and are resistant to Iso- and MI-induced apoptosis compared with AC3-C and WT mice. Phospholamban (PLN) is a target for modulation of SR Ca2+ content by CaMKII. PLN−/− mice have increased susceptibility to Iso-induced apoptosis. Verapamil pretreatment prevented Iso-induced apoptosis in PLN−/− mice, indicating the involvement of a Ca2+-dependent pathway. AC3-I and AC3-C mice were bred into a PLN−/− background. Loss of PLN increased and equalized SR Ca2+ content in AC3-I, AC3-C, and WT mice and abolished the resistance to apoptosis in AC3-I mice after MI. There was a trend ( P = 0.07) for increased Iso-induced apoptosis in AC3-I mice lacking PLN compared with AC3-I mice with PLN. These findings indicate CaMKII is proapoptotic in vivo and suggest that regulation of SR Ca2+ content by PLN contributes to the antiapoptotic mechanism of CaMKII inhibition.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3