Adrenergic origin of very low-frequency blood pressure oscillations in the unanesthetized rat

Author:

Radaelli Alberto,Castiglioni Paolo,Centola Marco,Cesana Francesca,Balestri Giulia,Ferrari Alberto U.,Di Rienzo Marco

Abstract

Spectral analysis of cardiovascular signals has been extensively used to investigate circulatory homeostatic mechanisms. However, the nature of very low-frequency (VLF) fluctuations remains unclear. Because we previously observed enhanced VLF fluctuations in blood pressure (BP) in the sympathectomized rat (a model characterized by markedly increased plasma epinephrine levels), the aims of our study were to assess whether the genesis of VLF fluctuations in BP depends on circulating catecholamines and to determine which adrenergic receptor(s) and which membrane ion channel(s) are involved. We used continuous intra-arterial BP recordings from unanesthetized unrestrained rats to compute the power of VLF fluctuations in BP in the intact condition, during acute ganglionic blockade with hexamethonium, and after restoration of BP levels by infusion (in addition to hexamethonium) of adrenergic agonists (epinephrine, norepinephrine, and clonidine) or nonadrenergic vasoconstrictors (vasopressin). Effects of infusion of specific adrenergic receptor blockers (propranolol, prazosin, and yohimbine) with hexamethonium and catecholamines and infusion of various membrane ion channel blockers on VLF fluctuations in BP were also evaluated. Our results are as follows. 1) Ganglionic blockade drastically reduced BP levels and VLF fluctuations. 2) All vasoconstrictors restored BP levels, but only adrenergic vasoconstrictors generated striking VLF fluctuations in BP. 3) Catecholamine-induced fluctuations were abolished by α2-, but not α1- or β-, adrenergic receptor blockade and by Ba2+-sensitive K+ channel or L-type Ca2+ channel, but not by other ion channel, blockers. We conclude that, in the conscious, unrestrained ganglion-blocked rat, catecholamine infusion generates VLF fluctuations in BP through stimulation of α2-receptors and activation of Ba2+-sensitive K+ channels. These fluctuations may have (patho)physiological relevance under conditions of disrupted circulatory homeostasis.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3