Noninvasive Biomarkers for Cardiovascular Dysfunction Programmed in Male Offspring of Adverse Pregnancy

Author:

Lakshman Rama1,Spiroski Ana-Mishel12ORCID,McIver Lauren B.1,Murphy Michael P.324,Giussani Dino A.1245ORCID

Affiliation:

1. Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom.

2. Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom.

3. MRC Mitochondria Biology Unit (M.P.M.), University of Cambridge, United Kingdom.

4. Department of Medicine (M.P.M., D.A.G.), University of Cambridge, United Kingdom.

5. Cambridge Strategic Research Initiative in Reproduction, United Kingdom (D.A.G.).

Abstract

Work in preclinical animal models has established that pregnancy complicated by chronic fetal hypoxia and oxidative stress programmes cardiovascular dysfunction in adult offspring. Translating this to the human condition comes with challenges, including the early diagnosis of affected individuals to improve clinical outcomes. We hypothesize that components of programmed cardiovascular dysfunction in offspring can be identified in vivo via analysis of blood pressure variability and heart rate variability and that maternal treatment with the mitochondria-targeted antioxidant MitoQ is protective. Pregnant rats were exposed to normoxia or hypoxia (13% O 2 ) ±MitoQ (500 μM in water), from 6 to 20 days gestation. Offspring were maintained in normoxia postnatally. At 16 weeks of age, 1 male per litter was instrumented with vascular catheters and a femoral blood flow probe under isoflurane anesthesia. After recovery, arterial blood pressure and femoral flow were recorded in conscious, free-moving rats and analyzed. Offspring of hypoxic pregnancy had (1) increased very-low-frequency blood pressure variability (A) and heart rate variability (B), indices consistent with impaired endothelial function and (2) increased heart rate variability low/high-frequency ratio (C) and low-frequency blood pressure variability (D), indices of cardiac and vascular sympathetic hyperreactivity, respectively. MitoQ ameliorated A and B but not C and D. We show that asymptomatic cardiovascular dysfunction in adult offspring programmed by hypoxic pregnancy can be diagnosed in vivo by blood pressure variability and heart rate variability, suggesting that these noninvasive biomarkers could be translated to the clinical setting. MitoQ protected against programmed endothelial dysfunction but not sympathetic hyperreactivity, highlighting the divergent programming mechanisms involved.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3