Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy

Author:

Azeloglu Evren U.12,Costa Kevin D.12

Affiliation:

1. Department of Biomedical Engineering, Columbia University, and

2. Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York

Abstract

To study how the dynamic subcellular mechanical properties of the heart relate to the fundamental underlying process of actin-myosin cross-bridge cycling, we developed a novel atomic force microscope elastography technique for mapping spatiotemporal stiffness of isolated, spontaneously beating neonatal rat cardiomyocytes. Cells were indented repeatedly at a rate close but unequal to their contractile frequency. The resultant changes in pointwise apparent elastic modulus cycled at a predictable envelope frequency between a systolic value of 26.2 ± 5.1 kPa and a diastolic value of 7.8 ± 4.1 kPa at a representative depth of 400 nm. In cells probed along their major axis, spatiotemporal changes in systolic stiffness displayed a heterogeneous pattern, reflecting the banded sarcomeric structure of underlying myofibrils. Treatment with blebbistatin eliminated contractile activity and resulted in a uniform apparent modulus of 6.5 ± 4.8 kPa. This study represents the first quantitative dynamic mechanical mapping of beating cardiomyocytes. The technique provides a means of probing the micromechanical effects of disease processes and pharmacological treatments on beating cardiomyocytes, providing new insights and relating subcellular cardiac structure and function.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A cell-based framework for modeling cardiac mechanics;Biomechanics and Modeling in Mechanobiology;2023-01-05

2. Automated Measurement of Cardiomyocyte Dynamics with DHM;Artificial Intelligence in Digital Holographic Imaging;2022-11-04

3. How cytoskeletal proteins regulate mitochondrial energetics in cell physiology and diseases;Philosophical Transactions of the Royal Society B: Biological Sciences;2022-10-03

4. Simultaneous assessment of radial and axial myocyte mechanics by combining atomic force microscopy and carbon fibre techniques;Philosophical Transactions of the Royal Society B: Biological Sciences;2022-10-03

5. Mechanical Property Detection of Cardiomyocytes by Atomic Force Microscopy;2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2022-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3