Cilostazol improves endothelium-derived hyperpolarizing factor-type relaxation in mesenteric arteries from diabetic rats

Author:

Matsumoto Takayuki,Kobayashi Tsuneo,Wakabayashi Kentaro,Kamata Katsuo

Abstract

We previously reported that in mesenteric arteries from streptozotocin (STZ)-induced diabetic rats that 1) endothelium-derived hyperpolarizing factor (EDHF)-type relaxation is impaired, possibly due to a reduced action of cAMP via increased phosphodiesterase 3 (PDE3) activity (Matsumoto T, Kobayashi T, and Kamata K. Am J Physiol Heart Circ Physiol 285: H283–H291, 2003) and that 2) PKA activity is decreased (Matsumoto T, Wakabayashi K, Kobayashi T, and Kamata K. Am J Physiol Heart Circ Physiol 287: H1064–H1071, 2004). Here we investigated whether chronic treatment with cilostazol, a PDE3 inhibitor, improves EDHF-type relaxation in mesenteric arteries isolated from STZ rats. We found that in such arteries 1) cilostazol treatment (2 wk) improved ACh-, A-23187-, and cyclopiazonic acid-induced EDHF-type relaxations; 2) the ACh-induced cAMP accumulation was transient and sustained in arteries from cilostazol-treated STZ rats; 3) the EDHF-type relaxation was significantly decreased by a PKA inhibitor in the cilostazol-treated group, but not in the cilostazol-untreated group; 4) cilostazol treatment improved both the relaxations induced by cAMP analogs and the PKA activity level; and 5) PKA catalytic subunit (Cat-α) protein was significantly decreased, but the regulatory subunit RII-β was increased (and the latter effect was significantly decreased by cilostazol treatment). These results strongly suggest that cilostazol improves EDHF-type relaxations in STZ rats via an increase in cAMP and PKA signaling.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3