Peripheral Nerve Denervation in Streptozotocin-Induced Diabetic Rats Is Reduced by Cilostazol

Author:

Tseng Kuang-Yi12ORCID,Wang Hung-Chen3,Wang Yi-Hsuan24ORCID,Su Miao-Pei2ORCID,Cheng Kai-Feng5,Cheng Kuang-I24,Chang Lin-Li45

Affiliation:

1. Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan

2. Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan

3. Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833253, Taiwan

4. Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan

5. Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan

Abstract

Background and Objective: Our previous study demonstrated that consistent treatment of oral cilostazol was effective in reducing levels of painful peripheral neuropathy in streptozotocin-induced type I diabetic rats. As diabetic neuropathy is characterized by hyperglycemia-induced nerve damage in the periphery, this study aims to examine the neuropathology as well as the effects of cilostazol treatments on the integrity of peripheral small nerve fibers in type I diabetic rats. Materials and Methods: A total of ninety adult male Sprague-Dawley rats were divided into the following groups: (1) naïve (control) group; (2) diabetic rats (DM) group for 8 weeks; DM rats receiving either (3) 10 mg/kg oral cilostazol (Cilo10), (4) 30 mg/kg oral cilostazol (Cilo30), or (5) 100 mg/kg oral cilostazol (Cilo100) for 6 weeks. Pain tolerance thresholds of hind paws toward thermal and mechanical stimuli were assessed. Expressions of PGP9.5, P2X3, CGRP, and TRPV-1 targeting afferent nerve fibers in hind paw skin and glial cells in the spinal dorsal horn were examined via immunohistochemistry and immunofluorescence. Results: Oral cilostazol ameliorated the symptoms of mechanical allodynia but not thermal analgesia in DM rats. Significant reductions in PGP9.5-, P2X3-, CGRP, and TRPV-1-labeled penetrating nerve fibers in the epidermal layer indicated denervation of sensory nerves in the hind paw epidermis of DM rats. Denervation significantly improved in groups that received Cilo30 and Cilo100 in a dose-dependent manner. Cilostazol administration also suppressed microglial hyperactivation and increased astrocyte expressions in spinal dorsal horns. Conclusions: Oral cilostazol ameliorated hyperglycemia-induced peripheral small nerve fiber damage in the periphery of diabetic rats and effectively mitigated diabetic neuropathic pain via a central sensitization mechanism. Our findings present cilostazol not only as an effective option for managing symptoms of neuropathy but also for deterring the development of diabetic neuropathy in the early phase of type I diabetes.

Funder

Ministry of Science and Technology, Taiwan MOST

Kaohsiung Medical University Hospital

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3