Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease

Author:

Balachandran Kartik,Sucosky Philippe,Jo Hanjoong,Yoganathan Ajit P.

Abstract

Matrix metalloproteinases (MMPs) and cathepsins are proteolytic enzymes that are upregulated in diseased aortic valve cusps. The objective of this study was to investigate whether elevated cyclic stretch causes an increased expression and activity of these proteolytic enzymes in the valve cusp. Circumferentially oriented fresh porcine aortic valve cusp sections were stretched to 10% (physiological), 15% (pathological), and 20% (hyperpathological) in a tensile stretch bioreactor for 24 and 48 h. The expression and activity of MMP-1, MMP-2, MMP-9, tissue inhibitor of MMP-1, and cathepsin L, S, and K were quantified and compared with fresh controls. Cell proliferation and apoptosis were also analyzed. As a result, at 10% physiological stretch, the expression and activity of remodeling enzymes were comparable with fresh controls. At 15% stretch, the expression of MMP-1, -2, -9 and cathepsin S and K were upregulated, whereas the expression of cathepsin L was downregulated compared with controls. A similar trend was observed at 20% stretch, but the magnitudes of upregulation and downregulation of the expression were less than those observed at 15%. In addition, there were significantly higher cell proliferation and apoptosis at 20% stretch compared with those of other treatment groups. In conclusion, elevated mechanical stretch on aortic valve cusps may detrimentally alter the proteolytic enzyme expression and activity in valve cells. This may trigger a cascade of events leading to an accelerated valve degeneration and disease progression.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3