MAP kinase kinase kinase-2 (MEKK2) regulates hypertrophic remodeling of the right ventricle in hypoxia-induced pulmonary hypertension

Author:

Brown R. Dale1,Ambler S. Kelly2,Li Min1,Sullivan Timothy M.2,Henry Lauren N.1,Crossno Joseph T.2,Long Carlin S.2,Garrington Timothy P.1,Stenmark Kurt R.1

Affiliation:

1. Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado; and

2. Department of Medicine, University of Colorado-Denver, Aurora, Colorado

Abstract

Pulmonary hypertension (PH) results in pressure overload of the right ventricle (RV) of the heart, initiating pathological RV remodeling and ultimately leading to right heart failure. Substantial research indicates that signaling through the MAPK superfamily mediates pathological cardiac remodeling. These considerations led us to test the hypothesis that the regulatory protein MAPKKK-2 (MEKK2) contributes to RV hypertrophy in hypoxia-induced PH. Transgenic mice with global knockout of MEKK2 (MEKK2−/−mice) and age-matched wild-type (WT) mice were exposed to chronic hypobaric hypoxia (10% O2, 6 wk) and compared with animals under normoxia. Exposure to chronic hypoxia induced PH in WT and MEKK2−/−mice. In response to PH, WT mice showed RV hypertrophy, demonstrated as increased ratio of RV weight to body weight, increased RV wall thickness at diastole, and increased cardiac myocyte size compared with normoxic control animals. In contrast, each of these measures of RV hypertrophy seen in WT mice after chronic hypoxia was attenuated in MEKK2−/−mice. Furthermore, chronic hypoxia elicited altered programs of hypertrophic and inflammatory gene expression consistent with pathological RV remodeling in WT mice; MEKK2 deletion selectively inhibited inflammatory gene expression compared with WT mice. The actions of MEKK2 were mediated in part through regulation of the abundance and phosphorylation of its effector, ERK5. In conclusion, signaling by MEKK2 contributes to RV hypertrophy and altered myocardial inflammatory gene expression in response to hypoxia-induced PH. Therapies targeting MEKK2 may protect the myocardium from hypertrophy and pathological remodeling in human PH.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3