Activated NO pathway in uterine arteries during pregnancy in an IUGR rat model

Author:

Bigonnesse Emilie1,Sicotte Benoit1,Brochu Michèle1

Affiliation:

1. Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada

Abstract

Insufficient development of the uteroplacental circulation may contribute to the development of intrauterine growth restriction (IUGR). We developed a rat model of IUGR by administering a low-Na+ diet. This diet reduces maternal blood volume expansion and uteroplacental perfusion. We hypothesized that an impaired endothelial function in radial arteries decreases vasorelaxation and lowers placental perfusion in this IUGR model. The objective was to assess radial uterine artery responses to vasoactive agents in the IUGR model versus controls. The vasoactive agents included phenylephrine and carbachol, use of a pressurized artery myograph, in the absence or presence of inhibitors of nitric oxide (NO) synthase [ N-nitro-l-arginine methyl ester (l-NAME)], cyclooxygenase (Ibuprofen), and endothelium-dependent hyperpolarization {apamin/1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole}, allowing better characterization of the mechanism implicated in endothelium-dependent relaxation. The results show that 1) the diameter of uterine radial arteries was significantly decreased in the IUGR group; 2) sensitivity to phenylephrine was reduced in IUGR arteries, which could be returned to control group values by inhibition of NO production; 3) the relaxation response to carbachol was increased in IUGR rats, principally mediated by endothelium-dependent hyperpolarization in both groups; 4) NO synthase inhibition by l-NAME decreased the maximum relaxation to carbachol only in the IUGR group; and 5) relaxation response to NO donors is increased in IUGR compared with control radial arteries. Contrary to the hypothesis, results in the IUGR model indicate that the NO pathway is activated in radial uterine arteries, most likely in compensation for the reduction in blood uteroplacental perfusion. NEW & NOTEWORTHY In contrast to genetic or surgical models of intrauterine growth restriction, the diet-induced model of reduced maternal volume expansion shows the nitric oxide pathway to be activated in the uterine artery, possibly from increased shear stress and/or placental factors.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3