Influence of substrate supply on cardiac efficiency, as measured by pressure-volume analysis in ex vivo mouse hearts

Author:

How Ole-Jakob,Aasum Ellen,Kunnathu Stanley,Severson David L.,Myhre Eivind S. P.,Larsen Terje S.

Abstract

In the present study, we tested the reliability of measurements of pressure-volume area (PVA) and oxygen consumption (MV̇o2) in ex vivo mouse hearts, combining the use of a miniaturized conductance catheter and a fiber-optic oxygen sensor. Second, we tested whether we could reproduce the influence of increased myocardial fatty acid (FA) metabolism on cardiac efficiency in the isolated working mouse heart model, which has already been documented in large animal models. The hearts were perfused with crystalloid buffer containing 11 mM glucose and two different concentrations of FA bound to 3% BSA. The initial concentration was 0.3 ± 0.1 mM, which was subsequently raised to 0.9 ± 0.1 mM. End-systolic and end-diastolic pressure-volume relationships were assessed by temporarily occluding the preload line. Different steady-state PVA-MV̇o2relationships were obtained by changing the loading conditions (pre- and afterload) of the heart. There were no apparent changes in baseline cardiac performance or contractile efficiency (slope of the PVA-MV̇o2regression line) in response to the elevation of the perfusate FA concentration. However, all hearts ( n = 8) showed an increase in the y-intercept of the PVA-MV̇o2regression line after elevation of the palmitate concentration, indicating an FA-induced increase in the unloaded MV̇o2. Therefore, in the present model, unloaded MV̇o2is not independent of metabolic substrate. This is, to our knowledge, the first report of a PVA-MV̇o2relationship in ex vivo perfused murine hearts, using a pressure-volume catheter. The methodology can be an important tool for phenotypic assessment of the relationship among metabolism, contractile performance, and cardiac efficiency in various mouse models.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3