Mechanisms of acrolein-induced myocardial dysfunction: implications for environmental and endogenous aldehyde exposure

Author:

Luo Jianzhu,Hill Bradford G.,Gu Yan,Cai Jian,Srivastava Sanjay,Bhatnagar Aruni,Prabhu Sumanth D.

Abstract

Aldehydes are ubiquitous pollutants generated during the combustion of organic materials and are present in air, water, and food. Several aldehydes are also endogenous products of lipid peroxidation and by-products of drug metabolism. Despite well-documented high reactivity of unsaturated aldehydes, little is known regarding their cardiovascular effects and their role in cardiac pathology. Accordingly, we examined the myocardial effects of the model unsaturated aldehyde acrolein. In closed-chest mice, intravenous acrolein (0.5 mg/kg) induced rapid but reversible left ventricular dilatation and dysfunction. In mouse myocytes, micromolar acrolein acutely depressed myofilament Ca2+ responsiveness without altering catecholamine sensitivity, similar to the phenotype of stunned myocardium. Immunoblotting revealed increased acrolein-protein adducts and protein-carbonyls in both acrolein-exposed myocardium (1.8-fold increase, P < 0.002) and myocytes (6.4-fold increase, P < 0.02). Both the contractile dysfunction and adduct formation were markedly attenuated by pretreatment with the thiol donor N-acetylcysteine (5 mM). Two-dimensional gel electrophoresis and mass-assisted laser desorption/ionization time-of-flight mass spectrometry analysis revealed two groups of adducted proteins, sarcomeric/cytoskeletal proteins (cardiac α-actin, desmin, myosin light polypeptide 3) and energy metabolism proteins (mitochondrial creatine kinase-2, ATP synthase), indicating site-specific protein modification that was confirmed by immunohistochemical colocalization. We conclude that direct exposure to acrolein induces selective myofilament impairment, which may be, in part, related to the modification of proteins involved in myocardial contraction and energy metabolism. Myocardial dysfunction induced by acrolein and related aldehydes may be symptomatic of toxicological states associated with ambient or occupational exposures or drug toxicity. Moreover, aldehydes such as acrolein may mediate cardiac dysfunction in pathologies characterized by high-oxidative stress.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3