Molecular and Cellular Mechanisms of Myocardial Stunning

Author:

Bolli Roberto1,Marbán Eduardo1

Affiliation:

1. Experimental Research Laboratory, Division of Cardiology, University of Louisville, Louisville, Kentucky; and Section of Molecular and Cellular Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland

Abstract

The past two decades have witnessed an explosive growth of knowledge regarding postischemic myocardial dysfunction or myocardial “stunning.” The purpose of this review is to summarize current information regarding the pathophysiology and pathogenesis of this phenomenon. Myocardial stunning should not be regarded as a single entity but rather as a “syndrome” that has been observed in a wide variety of experimental settings, which include the following: 1) stunning after a single, completely reversible episode of regional ischemia in vivo; 2) stunning after multiple, completely reversible episodes of regional ischemia in vivo; 3) stunning after a partly reversible episode of regional ischemia in vivo (subendocardial infarction); 4) stunning after global ischemia in vitro; 5) stunning after global ischemia in vivo; and 6) stunning after exercise-induced ischemia (high-flow ischemia). Whether these settings share a common mechanism is unknown. Although the pathogenesis of myocardial stunning has not been definitively established, the two major hypotheses are that it is caused by the generation of oxygen-derived free radicals (oxyradical hypothesis) and by a transient calcium overload (calcium hypothesis) on reperfusion. The final lesion responsible for the contractile depression appears to be a decreased responsiveness of contractile filaments to calcium. Recent evidence suggests that calcium overload may activate calpains, resulting in selective proteolysis of myofibrils; the time required for resynthesis of damaged proteins would explain in part the delayed recovery of function in stunned myocardium. The oxyradical and calcium hypotheses are not mutually exclusive and are likely to represent different facets of the same pathophysiological cascade. For example, increased free radical formation could cause cellular calcium overload, which would damage the contractile apparatus of the myocytes. Free radical generation could also directly alter contractile filaments in a manner that renders them less responsive to calcium (e.g., oxidation of critical thiol groups). However, it remains unknown whether oxyradicals play a role in all forms of stunning and whether the calcium hypothesis is applicable to stunning in vivo. Nevertheless, it is clear that the lesion responsible for myocardial stunning occurs, at least in part, after reperfusion so that this contractile dysfunction can be viewed, in part, as a form of “reperfusion injury.” An important implication of the phenomenon of myocardial stunning is that so-called chronic hibernation may in fact be the result of repetitive episodes of stunning, which have a cumulative effect and cause protracted postischemic dysfunction. A better understanding of myocardial stunning will expand our knowledge of the pathophysiology of myocardial ischemia and provide a rationale for developing new therapeutic strategies designed to prevent postischemic dysfunction in patients.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3