The elevated blood pressure of humanGRK4γA142Vtransgenic mice is not associated with increased ROS production

Author:

Wang Zheng,Armando Ines,Asico Laureano D.,Escano Crisanto,Wang Xiaoyan,Lu Quansheng,Felder Robin A.,Schnackenberg Christine G.,Sibley David R.,Eisner Gilbert M.,Jose Pedro A.

Abstract

G protein-coupled receptor (GPCR) kinases (GRKs) regulate the sensitivity of GPCRs, including dopamine receptors. The GRK4 locus is linked to, and some of its polymorphisms are associated with, human essential hypertension. Transgenic mice overexpressing human (h) GRK4γ A142V on a mixed genetic background (C57BL/6J and SJL/J) have impaired renal D1-dopamine receptor (D1R) function and increased blood pressure. We now report that hGRK4γ A142V transgenic mice, in C57BL/6J background, are hypertensive and have higher blood pressures than hGRK4γ wild-type transgenic and nontransgenic mice. The hypertensive phenotype is stable because blood pressures in transgenic founders and F6 offspring are similarly increased. To determine whether the hypertension is associated with increased production of reactive oxygen species (ROS), we measured renal NADPH oxidase (Nox2 and Nox4) and heme oxygenase (HO-1 and HO-2) protein expressions and urinary excretion of 8-isoprostane and compared the effect of Tempol on blood pressure in hGRK4γ A142V transgenic mice and D5R knockout (D5−/−) mice in which hypertension is mediated by increased ROS. The expressions of Nox isoforms and HO-2 and the urinary excretion of 8-isoprostane were similar in hGRK4γ A142V transgenic mice and their controls. HO-1 expression was increased in hGRK4γ A142V relative to hGRK4γ wild-type transgenic mice. In contrast with the hypotensive effect of Tempol in D5−/−mice, it had no effect in hGRK4γ A142V transgenic mice. We conclude that the elevated blood pressure of hGRK4γ A142V transgenic mice is due mainly to the effect of hGRK4γ A142V transgene acting via D1R and increased ROS production is not a contributor.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3