Tempol Reduces Oxidative Stress, Improves Insulin Sensitivity, Decreases Renal Dopamine D1 Receptor Hyperphosphorylation, and Restores D1 Receptor–G-Protein Coupling and Function in Obese Zucker Rats

Author:

Banday Anees Ahmad1,Marwaha Aditi1,Tallam Lakshmi S.1,Lokhandwala Mustafa F.1

Affiliation:

1. From the Heart and Kidney Institute, University of Houston, Houston, Texas

Abstract

Oxidative stress plays a pathogenic role in hypertension, particularly the one associated with diabetes and obesity. Here, we test the hypothesis that renal dopamine D1 receptor dysfunction in obese Zucker rats is caused by oxidative stress. One group each from lean and obese Zucker rats received tempol, a superoxide dismutase mimetic in drinking water for 2 weeks. Obese animals were hypertensive, hyperglycemic, and hyperinsulinemic, exhibited renal oxidative stress, and increased protein kinase C activity. Also, there was hyperphosphorylation of D1 receptor, defective receptor–G-protein coupling, blunted dopamine-induced Na+-K+-ATPase inhibition, and diminished natriuretic response to D1 receptor agonist, SKF-38393. However, obese animals had elevated levels of plasma nitric oxide and urinary cGMP. In addition, l-N-nitroarginine and sodium nitroprusside showed similar effect on blood pressure in lean and obese rats. In obese animals, tempol reduced blood pressure, blood glucose, insulin, renal oxidative stress, and protein kinase C activity. Tempol also decreased D1 receptor phosphorylation and restored receptor G-protein coupling. Dopamine inhibited Na+-K+-ATPase activity, and SKF-38393 elicited a natriuretic response in tempol-treated obese rats. Thus in obese Zucker rats, tempol ameliorates oxidative stress and improves insulin sensitivity. Consequently, hyperphosphorylation of D1 receptor is reduced, leading to restoration of receptor–G-protein coupling and the natriuretic response to SKF-38393.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3