Intact osmoregulatory centers in the preterm ovine fetus: Fos induction after an osmotic challenge

Author:

Caston-Balderrama A.1,Nijland M. J. M.2,McDonald T. J.2,Ross M. G.1

Affiliation:

1. Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Harbor-University of California Los Angeles Medical Center, Torrance, California 90502; and

2. Laboratory for Pregnancy and Newborn Research, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853

Abstract

We previously demonstrated a functional systemic dipsogenic response in the near-term fetal sheep (128–130 days; 145 days = full-term) with swallowing activity stimulated in response to central and systemic hypertonic saline. Preterm fetal sheep (110–115 days) do not consistently demonstrate swallowing in response to hypertonic stimuli, and it is unclear whether this is due to immaturity of osmoreceptor mechanisms or neuronal pathways activating swallowing motor neurons. To determine whether osmoreceptive regions in the preterm fetus are activated by changes in plasma tonicity, we examined Fos expression with immunostaining in these neurons in response to an osmotic challenge. Nine preterm fetal sheep [five hypertonic saline-treated fetuses (Hyp) and four isotonic saline-treated fetuses (Iso)] were prepared with vascular and intraperitoneal catheters. Seventy-five minutes before tissue collection, hypertonic (1.5 M) or isotonic saline was infused (12 ml/kg) via an intraperitoneal catheter to fetuses. Brains were examined for patterns of neuronal activation (demonstrated by Fos protein expression). Hyp demonstrated increases in plasma osmolality (∼10 mosmol/kg H2O) and Na concentrations (5 meq/l). Increased Fos expression was detected in Hyp in the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), median preoptic nucleus (MnPO), supraoptic (SON), and paraventricular nuclei (PVN) compared with Iso animals. Neuronal activation within the OVLT, SFO, and MnPO indicates intact osmoregulatory mechanisms, whereas activation of the SON and PVN suggests intact fetal neural pathways to arginine vasopressin neurons. These results suggest that preterm fetal swallowing insensitivity to osmotic stimuli may be due to immaturity of integrated motor neuron pathways.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intake Regulation;Nutrient Metabolism;2015

2. A role of nesfatin-1/NucB2 in dehydration-induced anorexia;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2014-07-15

3. Ovine fetal hormonal and hypothalamic neuroendocrine responses to maternal water deprivation at late gestation;International Journal of Developmental Neuroscience;2009-02-20

4. Gross and Histopathological Observations of Long-term Catheterized Vessels in Experimental Sheep;Journal of Veterinary Medicine Series A;2006-06

5. Programming of Hypertonicity in Neonatal Lambs: Resetting of the Threshold for Vasopressin Secretion;Endocrinology;2003-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3