Immunocytochemical Localization of Fos in Perfused Nonhuman Primate Brain Tissue: Fixation and Antisera Selection

Author:

Caston-Balderrama Anne L.1,Cameron Judy L.123,Hoffman Gloria E.4

Affiliation:

1. Department of Psychiatry (JLC,ALC–B), University of Pittsburgh, Pittsburgh, Pennsylvania

2. Department of Neuroscience (JLC), University of Pittsburgh, Pittsburgh, Pennsylvania

3. Department of Cell Biology and Physiology (JLC), University of Pittsburgh, Pittsburgh, Pennsylvania

4. Department of Neurobiology (GEH), University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

Immunocytochemical localization of immediate early gene proteins, such as Fos, provides a powerful tool with which to demonstrate activated neuronal populations in response to specific stimuli. In contrast to studies using rat brain tissue that consistently show good Fos detection with a variety of antisera, studies using brain tissue from other species yield variable Fos detection. This may be partly due to differences in Fos protein sequences among species or to perfusion and fixation methods. To determine the ability of various Fos antisera to detect neuronal activation in nonhuman primate tissue, we tested nine Fos antisera and compared these antibodies under conditions of intense or physiological stimulation. Monkey brain tissue was either perfused and postfixed with 4% paraformaldehyde or perfused with 4% paraformaldehyde and postfixed with 2.5% acrolein in 4% paraformaldehyde. In rat tissue, stained for comparison, several antisera resulted in good to excellent Fos detection. However, few antisera tested in monkey tissue resulted in excellent Fos staining. We demonstrate that detection of Fos in monkey brain tissue perfused with 4% paraformaldehyde can be improved by postfixation in a dilute acrolein solution. Our findings emphasize the importance of choosing appropriate antisera and perfusion–fixation procedures to optimize Fos detection in nonhuman primate tissue.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3