Inhibition of NF-κB improves left ventricular remodeling and cardiac dysfunction after myocardial infarction

Author:

Onai Yasuyuki,Suzuki Jun-ichi,Maejima Yasuhiro,Haraguchi Go,Muto Susumu,Itai Akiko,Isobe Mitsuaki

Abstract

Several studies have demonstrated that NF-κB is substantially involved in the progression of cardiac remodeling; however, it remains uncertain whether the continuous inhibition of NF-κB is effective for the prevention of myocardial remodeling. Myocardial infarction (MI) was produced by ligation of the left anterior coronary artery of rats. IMD-0354 (10 mg/kg per day), a novel phosphorylation inhibitor of IκB that acts via inhibition of IKK-β, was injected intraperitoneally starting 24 h after induction of MI for 28 days. After 28 days, the IMD-0354-treated group showed significantly improved survival rate compared with that of the vehicle-treated group ( P < 0.05). Although infarct size was similar in both groups, improved left ventricular (LV) remodeling and diastolic dysfunction, as indicated by smaller LV cavity (LV end-diastolic area: vehicle, 74.13 ± 3.57 mm2; IMD-0354, 55.00 ± 3.73 mm2; P < 0.05), smaller peak velocity of early-to-late filling wave (E/A) ratio (vehicle, 3.87 ± 0.26; IMD-0354, 2.61 ± 0.24; P < 0.05), and lower plasma brain natriuretic peptide level (vehicle, 167.63 ± 14.87 pg/ml; IMD-0354, 110.75 ± 6.41 pg/ml; P < 0.05), were observed in the IMD-0354-treated group. Moreover, fibrosis, accumulation of macrophages, and expression of several factors (transforming growth factor-β1, monocyte chemoattractant protein-1, matrix metalloproteinase-9 and -2) in the noninfarcted myocardium was remarkably inhibited by IMD-0354. In conclusion, inhibition of NF-κB activation may reduce the proinflammatory reactions and modulate the extracellular matrix and provide an effective approach to prevent adverse cardiac remodeling after MI.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3