Tissue oxygenation after exchange transfusion with ultrahigh-molecular-weight tense- and relaxed-state polymerized bovine hemoglobins

Author:

Cabrales Pedro12,Zhou Yipin3,Harris David R.3,Palmer Andre F.3

Affiliation:

1. La Jolla Bioengineering Institute, La Jolla;

2. Department of Bioengineering, University of California-San Diego, La Jolla, California; and

3. William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio

Abstract

Hemoglobin (Hb)-based O2 carriers (HBOCs) constitute a class of therapeutic agents designed to correct the O2 deficit under conditions of anemia and traumatic blood loss. The O2 transport capacity of ultrahigh-molecular-weight bovine Hb polymers (PolybHb), polymerized in the tense (T) state and relaxed (R) state, were investigated in the hamster chamber window model using microvascular measurements to determine O2 delivery during extreme anemia. The anemic state was induced by hemodilution with a plasma expander (70-kDa dextran). After an initial moderate hemodilution to 18% hematocrit, animals were randomly assigned to exchange transfusion groups based on the type of PolybHb solution used (namely, T-state PolybHb and R-state PolybHb groups). Measurements of systemic parameters, microvascular hemodynamics, capillary perfusion, and intravascular and tissue O2 levels were performed at 11% hematocrit. Both PolybHbs were infused at 10 g/dl, and their viscosities were higher than nondiluted blood. Restitution of the O2 carrying capacity with T-state PolybHb exhibited lower arterial pressure and higher functional capillary density compared with R-state PolybHb. Central arterial O2 tensions increased significantly for R-state PolybHb compared with T-state PolybHb; conversely, microvascular O2 tensions were higher for T-state PolybHb compared with R-state PolybHb. The increased tissue Po2 attained with T-state PolybHb results from the larger amount of O2 released from the PolybHb and maintenance of macrovascular and microvascular hemodynamics compared with R-state PolybHb. These results suggest that the extreme high O2 affinity of R-state PolybHb prevented O2 bound to PolybHb from been used by the tissues. The results presented here show that T-state PolybHb, a high-viscosity O2 carrier, is a quintessential example of an appropriately engineered O2 carrying solution, which preserves vascular mechanical stimuli (shear stress) lost during anemic conditions and reinstates oxygenation, without the hypertensive or vasoconstriction responses observed in previous generations of HBOCs.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3