Mapping of the functional microcirculation in vital organs using contrast-enhanced in vivo video microscopy

Author:

Varghese Hemanth J.,MacKenzie Lisa T.,Groom Alan C.,Ellis Christopher G.,Chambers Ann F.,MacDonald Ian C.

Abstract

A functional microcirculation is vital to the survival of mammalian tissues. In vivo video microscopy is often used in animal models to assess microvascular function, providing real-time observation of blood flow in normal and diseased tissues. To extend the capabilities of in vivo video microscopy, we have developed a contrast-enhanced system with postprocessing video analysis tools that permit quantitative assessment of microvascular geometry and function in vital organs and tissues. FITC-labeled dextran (250 kDa) was injected intravenously into anesthetized mice to provide intravascular fluorescence contrast with darker red blood cell (RBC) motion. Digitized video images of microcirculation in a variety of internal organs (e.g., lung, liver, ovary, and kidney) were processed using computer-based motion correction to remove background respiratory and cardiac movement. Stabilized videos were analyzed to generate a series of functional images revealing microhemodynamic parameters, such as plasma perfusion, RBC perfusion, and RBC supply rate. Fluorescence contrast revealed characteristic microvascular arrangements within different organs, and images generated from video sequences of liver metastases showed a marked reduction in the proportion of tumor vessels that were functional. Analysis of processed video sequences showed large reductions in vessel volume, length, and branch-point density, with a near doubling in vessel segment length. This study demonstrates that postprocessing of fluorescence contrast video sequences of the microcirculation can provide quantitative images useful for studies in a wide range of model systems.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3