Four-Dimensional Microvascular Analysis Reveals That Regenerative Angiogenesis in Ischemic Muscle Produces a Flawed Microcirculation

Author:

Arpino John-Michael1,Nong Zengxuan1,Li Fuyan1,Yin Hao1,Ghonaim Nour1,Milkovich Stephanie1,Balint Brittany1,O’Neil Caroline1,Fraser Graham M.1,Goldman Daniel1,Ellis Christopher G.1,Pickering J. Geoffrey1

Affiliation:

1. From the Robarts Research Institute (J.-M.A., Z.N., F.L., H.Y., B.B., C.O., J.G.P.), Departments of Medicine (C.G.E., J.G.P.), Medical Biophysics (J.-M.A., S.M., B.B., G.M.F., D.G., C.G.E., J.G.P.), Biochemistry (J.G.P.), and Biomedical Engineering (N.G., D.G.), Western University, London, Canada; and Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada (G.M.F.).

Abstract

Rationale: Angiogenesis occurs after ischemic injury to skeletal muscle, and enhancing this response has been a therapeutic goal. However, to appropriately deliver oxygen, a precisely organized and exquisitely responsive microcirculation must form. Whether these network attributes exist in a regenerated microcirculation is unknown, and methodologies for answering this have been lacking. Objective: To develop 4-dimensional methodologies for elucidating microarchitecture and function of the reconstructed microcirculation in skeletal muscle. Methods and Results: We established a model of complete microcirculatory regeneration after ischemia-induced obliteration in the mouse extensor digitorum longus muscle. Dynamic imaging of red blood cells revealed the regeneration of an extensive network of flowing neo-microvessels, which after 14 days structurally resembled that of uninjured muscle. However, the skeletal muscle remained hypoxic. Red blood cell transit analysis revealed slow and stalled flow in the regenerated capillaries and extensive arteriolar-venular shunting. Furthermore, spatial heterogeneity in capillary red cell transit was highly constrained, and red blood cell oxygen saturation was low and inappropriately variable. These abnormalities persisted to 120 days after injury. To determine whether the regenerated microcirculation could regulate flow, the muscle was subjected to local hypoxia using an oxygen-permeable membrane. Hypoxia promptly increased red cell velocity and flux in control capillaries, but in neocapillaries, the response was blunted. Three-dimensional confocal imaging revealed that neoarterioles were aberrantly covered by smooth muscle cells, with increased interprocess spacing and haphazard actin microfilament bundles. Conclusions: Despite robust neovascularization, the microcirculation formed by regenerative angiogenesis in skeletal muscle is profoundly flawed in both structure and function, with no evidence for normalizing over time. This network-level dysfunction must be recognized and overcome to advance regenerative approaches for ischemic disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3