Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction

Author:

Keyes Kyle T.1,Xu Jing2,Long Bo1,Zhang Congfang1,Hu Zhaoyong3,Ye Yumei1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas;

2. Section of Nephrology, Changhai Hospital, Shanghai, People's Republic of China; and

3. Section of Nephrology, Baylor College of Medicine, Houston, Texas

Abstract

Phosphoinositide 3-kinase (PI3K) mediates myocardium protective signaling through phosphorylation of phosphatidylinositol (Ptdins) to produce Ptdins(3,4,5)P3. Lipid phosphatase and tensin homolog on chromosome 10 (PTEN) antagonizes PI3K activity by dephosphorylating Ptdins(3,4,5)P3; therefore, the inhibition of PTEN enhances PI3K/Akt signaling and could prevent myocardium from ischemia-reperfusion (I/R) injury. Here we studied 1) whether the pharmacological inhibition of PTEN by bisperoxovanadium molecules [BpV(HOpic)] attenuates simulated I/R (SIR) injury in vitro and 2) whether the administration of BpV(HOpic) either before or after ischemia limits myocardial infarct size (IS) and ameliorates cardiodysfunction caused by infarction. First, adult rat cardiomyocytes were treated with or without BpV(HOpic) and then exposure to SIR. Second, anesthetized rats received BpV(HOpic) either before or after ischemia. IS was assessed at 4 h reperfusion, and left ventricular function was evaluated by echocardiography at 28 days postreperfusion. As a result, BpV(HOpic) decreased cell death, improved 3-[4,5-yl]-2,5-diphenyltetrazolium bromide (MTT) viability, and reduced apoptosis in cells exposed to SIR. These protective effects of BpV(HOpic) are associated with increased phospho-Akt and the repression of caspase-3 activity. Second, the administration of BpV(HOpic) significantly reduced IS and suppressed caspase-3 activity following I/R injury and consequentially improved cardiac function at 28 day postinfarction. These beneficial effects of BpV(HOpic) are attributed to increases in myocardial levels of phosphorylation of Akt/endothelial nitric oxide synthase (eNOS), ERK-1/2, and calcium-dependent nitric oxide synthase activity. In conclusion, the pharmacological inhibition of PTEN protects against I/R injury through the upregulation of the PI3K/Akt/eNOS/ERK prosurvival pathway, suggesting a new therapeutic strategy to combat I/R injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3