Sex differences in myosin heavy chain isoforms of human failing and nonfailing atria

Author:

Reiser Peter J.1,Moravec Christine S.2

Affiliation:

1. Division of Biosciences, College of Dentistry, Ohio State University, Columbus, Ohio; and

2. Kaufman Center for Heart Failure, Cleveland Clinic, Cleveland, Ohio

Abstract

Mammalian hearts express two myosin heavy chain (MHC) isoforms, which drive contractions with different kinetics and power-generating ability. The expression of the isoform that is associated with more rapid contraction kinetics and greater power output, MHC-α, is downregulated, with a concurrent increase in the relative amount of the slower isoform, MHC-β, during the progression to experimentally induced or disease-related heart failure. This change in protein expression has been well studied in right and left ventricles in heart failure models and in humans with failure. Relatively little quantitative data exists regarding MHC isoform expression shifts in human failing atria. We previously reported significant increases in the relative amount of MHC-β in the human failing left atrium. The results of that study suggested that there might be a sex-related difference in the level of MHC-β in the left atrium, but the number of female subjects was insufficient for statistical analysis. The objective of this study was to test whether there is, in fact, a sex-related difference in the level of MHC-β in the right and left atria of humans with cardiomyopathy. The results indicate that significant differences exist in atrial MHC isoform expression between men and women who are in failure. The results also revealed an unexpected twofold greater amount of MHC-β in the nonfailing left atrium of women, compared with men. The observed sex-related differences in MHC isoform expression could impact ventricular diastolic filling during normal daily activities, as well as during physiologically stressful events.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3